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'e Annual Report on Grant AFOSR-80-0228 ELECTE

George C. Papanicolaou, Principal Investigator APR 2 41984D

Period August 1, 1982 - October 31, 1983 - V

During this period the following scientists and students were supported,
* in addition to the principal investigator:

o G. Beylkin Post-Doctoral Scientist

K. Golden Graduate Student

* B. LeMesurier Graduate Student

The following papers have appeared, have been submitted for publication,

'Em or are in the final stages of preparation:

K. Golden and G. Papanicolaou. Bounds for effective parameters of
heterogeneous media by analytic continuation. Comm. Math. Phys. 90 (1983),
pp. 473-491.

G. Beylkin. Gaussian beams and representation of the Green's function.
% Submitted to Wave Motion.

D. McLaughlin, G. Papanicolaou and 0. Pironneau. Convection of Microstructure.
Submitted to SIAM J. on Applied Mathematics.

G. Papanicolaou. Diffusions and random walks in random media. In
Mathematics and Physics of Disordered Media, Springer Lecture Notes in
Mathematics #1035, 1983.

R. Figari, E. Orlandi and G. Papanicolaou. Diffusive behavior of a random
walk in a random medium. Proceedings of Kyoto Conference, 1982, N. Ikeda,
editor, to appear.

G. Papanicolaou. Macroscopic properties of composites, bubbly fluids,
suspensions and related problems. Eyrolles, France, 1984, to appear.
(These are the lecture notes for a series of 13 lectures given in July 1983.)

D. Dawson and G. Papanicolaou. Random wave processes. In preparation.

LLJ Remarks on the research effort

LL- Beylkin, who is now permanently at Schlumberger-Doll Research,

Ridgefield, Conn., worked on the use of Gaussian bea-ms to reprc3ent wave
C-3 fields at high frequencies in a manner that is insensitive to singularities

such as caustics. Several investigators have been interested in this subject
recently (at Exxon in Houstcn and in Now Jersey. at Schlumberger and else-
where), although there is no clear consErsus yet regarding the usefulness
of beams relative to more conventional geometrical optics methods. One of
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.. the principal objectives of Beylkin was to find how the beam representation
could help in the analysis of random media. The presence of singularities
is a very serious limiting factor there (recent work of B. White at Exxon
has analyzed wave fields at high frequency in a random medium up to the

- . onset of caustic formation).

Papanicolaou and Golden continued their work on the analytic continuation
method. Golden is writing his dissertation now and will obtain his degree

-. in June 1984. A complete description of progress in this area will be given

later. The enclosed paper gives an idea of what had been acomplished until
last February.

B. LeMesurier has been working on the focusing singularity for the
nonlinear Schrodinger equation, exclusively by numerical computations up
to now. The analysis of the focusing singularity is our principal concern

now. We want to develop accurate and well structured computational schemes
for analyzing singularities in nonlinear beams. As our analytical work has
shown (with Weinstein and McLaughlin last year; the final write-up on this

.is still in preparation), the focusing singularity requires deep and difficult
analysis for its solution. It is also a basic problem that arises in many
applications in nonlinear wave propagation.

Some work on random media is reported in the enclosed papers. This is
work that was done earlier and is continuing at a much reduced pace now.

The works with Dawson and with McLaughlin and Pironneau were discussed
earlier. The paper with McLaughlin and Pironneau is included. We want to
do much more numerical work in connection with this problem and we will
move in this direction in the near future. The paper with Dawson is in

preparation. (A copy of the preliminary version was sent earlier.)
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A SUMMARY OF WORK THIS SUMMER ON THE

NON-LINEAR SCHRODINGER EQUATION

B. LeMesurier

The equation is

iu t + AU + lul 2u = 0 on [0,27T] 2

with periodic boundary conditions.

The work done was almost entirely numerical, although some
attempts were made to extend results from the case of u in
Schwartz class on I 2

Some previous work of this nature has been done by P.L. Sulem,

Cl Sulen and A. Patera [1], giving at least one example of initial
data that seems to evolve to "blow up," that is sup ui -0 in

. finite time. I have used their algorithm, as follows
--. Writing u - M < j,k < M-1 for the complex Fourier

u~k
components of u values on a grid 2M x 2M at time step n

*the partially implicit scheme

i(un l-u n ) + 1A n+l +Aun) + 3, n12un lun-l 2 n-l
At + u u u 0

gives the Fourier transformed equation

2i An+l -n 2 2  An+l + )^n 1  u~ n-l, 2n-lAt.'. (G .^nl - U ,k )  (j2+k2).( j,k +  ,k ) +3 (ju - u - k

-At uj,k

- I have worked with M a power of two, usually 32, to allow greatest
speed in computation of Fast Fourier Transforms.

Algorithms were written for these as this turned out to be
faster than the available packaged code (N.C.A.R.) for general M.%-.

Input Parameters

In addition to an array of initial values for u , there are

dt the time step size

ttime the maximum time to which solut.ion will
be continued

umax a maximum value for mxa' u

Thu soiver ston &n Lith( r the ttimc or umax
limit is attaincd.

. . . . . ..
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IPF graphics output is generated
every IPF time-steps

*,' ISF printed output as specified below
is generated every ISF time-steps

Typically ISF << IPF

Output

* .The graphics output currently consists of an array of values
of lul , with boundary values repeated at both boundaries. This
is input to contour plotting and other programs.

The current time is also output. (Other graphics output,
in particular phase information, is now being added.)

The printed data consists of a list of the above input
parameters, and the following (Additions are frequently made to
this list as new questions arise)

E uluI2

H'= (lVul' 'J~ul')
These are conserved by the P.D.L. but not the algorithm, so
measure accuracy of the solver.

maxlul These three should all "blow-up" for
suitable initial data.

I Ivul2

J ul4

The remaining auantities are "localized"; the integrals are taken
over a disc in the center of the period. This part of the output
was added after summer, principally to study the variance of part
of the data, which in the Schwartz class data case is the key to
proving blow-up.

Thus a new input parameter RL is added, and

B = (x,y) x-i[r2+iy-rj2 < (2iRI,) in the following list of output

quantities
V - lul 2 r 2 r2  + lx- l2  + ly-n,2
loc

.* 2
Various factors of 4- etc. are omitted.

. -. .:
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Backward difference estimates of

dd2
atVo and - . Vl0 c

B

Hioc fIVuI2  lI1
B

f Ivul 2
B

!u,4~
B
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Observations

Initial data has mostly been chosen with a "bump" shape:
one or two maxima near the period's center, dying off to small.
values (and small gradients) near the boundary. All have been
real valued, and most have had H < 0 , a condition guaranteeing
blowup in the Schwartz class (i.e. all space) case.

* The results has been, consistently, growing and narrowing
of the bump at an accelerating rate, as expected from the all
space case. However limitations on resolution only allow a

* * igrowth in maxlul by a factor of about 3 before computational
errors become substantial: a finer grid will be needed in later
work.

As one hope is that the evolution of a bump to blow-up
is mostly local (not affected much by values away from the bump
so long as they are small or flat, say) experiments have been
done where the central bump is left unchanged, but the values
outside are set to various different constants (smoothly connected
to the bump).

The results are promising: the rate and nature of the blow-up
changes little, and the near-constant outer region evolves much
as if the bump were not present. That is, it
retains constancy in space and the same absolute value, to a
fair degree. A second localization test was the use of two

*j separated bumps, as below.

The evolution was compared to the
evolution of data with just one or
the other bump.

Again the results were pleasing:
the two bumps seem to evolve in ignorance
of each other.

Later work (after the sumner) has studied the localized
variance of a bump, as mentioned above. The motivation is the
result

d2V dx for the all-space case.

S..dtPO..

Local variances have been studied with the cutoff well down the
shoulder of a bump, with and without radial symmetry, and with
the value outside the cutoff not necessarily going to zero. (The
value near the boundary has always bcen a constant, initially.)

-. 1
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The local variance has consistently evolved with

2d V1  8=vlo
dt C loc

In the case of localization containing the support of the initial
data, the ratio seems to be a little less. This is reasonable
as u(x,o) = C , a constant gives Vloc = constant, H < 0

As yet, Vlo has not got near 0' in the runs, and
it is not clear wether or not it would approach close to 0
before blow-up occurs. This question awaits higher resolution
computations.

[1] P. L. Sulem, C. Sulem and A. Patera, "Numerical Simulation
of Singular Solutions to the Two-dimensional Cubic
Schr6dinger Equation." In the thesis of C. Sulem,
L'Universit6 Paris-Nord.
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Thesis of Ken Golden. Outline.

%

1. The Anal tic Continuation Method for Two-Component Media

Let (Q,F,P) be a probability space and c(x,w) be a stationary random-field

on x C RId and we r .Z. For two-component media let E(W) -i = XI(W)+F2X2(W)

be the dielectric constant at the origin in R d  of the realization w E S of

the material, where XI 1 if medium I occupies the origin and X1 0 other-

wise, similarly for X2 The effective dielectric constant of the composite

may be defined as

* C P(dwo)e(o)E(w)'e k ,(I

where E is the electric field at the origin with average ek , a unit vector

in the kth direction. It is useful to consider the function F(s) = l-m(h)

where m(h) =/ 2 (E /E2 ) and s - 1/(l-h) . Maxwell's equations yield a

* .resolvent expression for E so that

F(s) -P(d1)XI (s + (2)

where r = (-A)- V . The spectral theorem in an appropriate Hilbert space

then gives

F(s) = -- (3)

0

where p is the positive Borel measure on (0,1) arising from the family of projec-

tions associated with the self adjoint operator X. The representation (3)

can also be proved by noting that Im(-F) > 0 when Im(s) > 0 and that F is

*analytic off (0,l] with F(-) = 0. Then a general theorem in function theory

gives (3).

For Isl > 1 we can expand (2) about a homogeneous medium (h=1 or s-=o)

-,. ,--

Fos).XkkX1 X17 1 . kk1F (S) P(dw) 2 + 3 - ... (4)

where F = (-A)-l --- Equating (4) to the 1 expansion of (3)
kk ax dxk  S

-.

*" ****""""" %*"*" ****""%* ' -*- .-- *.*.. '% , *..aa.*
' ' ' '
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determines the moments of U Then (3) provides the analytic continuation of

(4) from Isi > 1 to the full domain of analyticity of F(s). If (4) is assumed

known only to first order, then only the mass p1  of p is fixed, where p1

is the volume fraction of medium 1. Under this assumption we obtain for fixed

s f [0,l) extremal values of the linear functional F (p) by evaluating (3)

with Dirac point masses, since they are the extreme points of the set of positive

Borel measures on [0,1) with fixed mass. The resulting bounds restrict F (ii)

to a region in the complex plane bounded by two circular arcs, which give for

* real s the classical Wiener bounds (pl/E 1 +p 2 /E2) < E < P S 1+P22. If

the material is further assumed to be statistically isotropic, then it is possible

to calculate the second term in (4). This F known to second order can be

transformed to a function of the type (3) known only to first order, the extremi-

zation of which gives the Hashin-Shtrikman bounds, which were first found using

a variational principle. The transformation procedure works to any order in (4).

. . 2. Extension to Multicomponent Media

As Bergman [6] and Milton [7] point out, it is not clear from the

two-component case how to extend the analytic method to three or more components.

-: -. We now describe such an extension. For simplicity we consider only three-component

materials. The effective parameter E* is then an analytic function of two

complex variables h = I/E 3  and h = s / 3 with Im c* > 0 on
1 13 2 23

Im h I >0i x Im h2 >0} . The key step in the extension is to obtain a represen-

tation formula analogous to (3). Using Cauchy's theorem in several variables we

have proven the following for the polydisc D2 = i(11 (4I21 <11 for

f(49,,2 ) to be analytic with non-negative real part in D 2  it is necessary

and sufficient that f may be represented as

= iv(0,0) + (HIH +Hl+H 2 -)(tlt2 (5)
2 ~ 2 j ( 1 2  1 22

T2

it. it(e / (, j =1,2, v= Inf, and u C Mq
where H. MJq

"., : .. .. .-.-.- .-..-. --... .- '.--
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M q 1 positive Borel measures of mass q on the torusT2

satisfying the condition e 2  dii (tl,t) 0 (6)

T 2

when nm < 0

We evaluate (5) with d1(tl,t2 ) = dv 1 (t) x dt2 +dt1 x dv 2 (t2) , where v1  and

V2 are positive measures on the circle. Let U .2 > Qi X (Im s2 >
where each factor U is conformally equivalent to the disc D , with sI  1 /(1-h 1)

and s2 1 (l-h2). Now, a function K(sl,s 2 ) analytic on

U 2 UU2 U(([O,) x]R)U( Ix [0,i)))c with Im K>0 on and K(-,-)=O

where "-" denotes complex conjugation and "c" denotes complementation in IR

has the representation 1

di 1 d(z1 )  d)2(z 2 )
K(sl,s 2 ) = z S + r z2 ) (7)0 0

where p 1 and 112 are positive measures arising from V 1  and v 2 . If

K(sls 2) -F(sls 2) then the expansion of F(sls ) corresponding to (4)
1 2 1'2

forces the masses of Pi and p 2 to be p1  and P2 ' the volume fractions

of media 1 and 2, respectively. If pi and p12 are point masses at

Z= z2 
= 0 then p on the torus is an extreme point of M . Such p giveS2.. Pl+P 2

the real Wiener bounds. When the material is statistically isotropic F has a

non-zero second order crossterm in its expansion, so that (7) is not applicable.

However, the function G = F / (1-1 F) has the expansion

G(SS 2 = + p p 2  + . Letting K= -G with U and 2
s 1  s I) 2  ds2 + ds2 + Sl2

- point masses at z = z = I/d gives the real Hashin-Shtrikmiau bounds for
1 2-

three-component materials.

[7

'. ..
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Currently we are working on proving for the first time complex versions

of the Wiener and Hashin- Shtrikman bounds for three-component materials which

restrict F to regions bounded by circular arcs. In our formalism, establishing

these bounds and the previous real ones depends on showing that for fixed
( ltc ( i, D2 , the extremal values of the linear functional f ,(j1j) on M1

are attained when dp = 5 xdt or dp = dt x * , where t*,t* E [0,2r)
2 1 t 2  12

We have evidence that such a statement is true and are working to prove it.

These matters will be contained in the author's Ph.D. thesis.

Underlying a full understanding of the three-component problem is the

characterization of the set of extreme points of MI . Rudin [51 and McDonald [8]

have given examples of these extreme points but a full characterization of

them is still unknown. It is not even known if all the extreme points are
2

singular with respect to the Haar measure on T . We propose to analyze the

extremal structure of MI  One way of gaining insight is to consider the set

nx n
of positive measures M, satisfying the Fourier condition in (6) living

2 2 2 0O 1 n-1,not on T , but on a discrete model of T , namely T 2  = L[j ,,.1

n-i
X 0,G ,. n- w = e . For a measure d- = L. .5 . . on

".,-L~1 i~= J 1 3O
ij=o

2 22
T , condition (6) gives (n-l) +1 equations in the n unknowns a..
nxn xn

nxn
. We have an algorithm which enumerates all the extreme points of , which

2 2_
n (n1) 1-inaysisof Mnxn

is a convex compact subset of n Hopefully, 1

will shed some light on the structure of MI . We should also mention that
1

McDonald [8] has established an isomorphism between M and a certain family
t

Q of linear operators on the disc algebra. Ana]yzing the extreme points of Q

should give information about those of M1

In [4] we rederive the classical Hashin-Shtrikm,-an bound for three-componentE materials using analytic continuation. Xilton [71 his shwn Lhat for certain

volume fraction regimes these bounds are not optimal, i.e. there does not

exist a material that attains them. le conjectures tighter "bounds," but as

yet they remain unproved. ;We hcpc :o settle thiS; qut in,, ,:Sing the methods



:_4' ds

we have developed. One approach is to understand more fully the fractional

linear transformations of F(sls 2) that we use to derive bounds on e , in

the hope of finding one that might yield better bounds for certain volume

fractions. Since certain transformations of F induce a nonlinear mapping

from M into M , a related approach is to look for extreme points
q q

different from the ones used-in the beginning of this section that would

perhaps give better bounds for certain volume fractions.

Finally, in section I we alluded to a procedure which gives bounds
incorporating nth order information in (4). We hope to do the same for multi-

*component media by using fractional linear transformations.

.' 3. Application to the Conductivity Problem in Bond Percolation

If the heterogeneous "material" is a square lattice composed of bonds of

conductivity a1  with probability pl and a2 with probability p2 I-Pl

then at percolation (h= 1 /a2 = 0 or s= 1) the expansion of (3) gives

F(l) = U(0)(pI) + (1)(P. ) + P(2)(pl) + (8)

where F = l-c*/ar T* is the effective conductivity of the lattice and the
2'

(n)
P are the moments of p. Expansion (4) gives

(n) =(-1)n~. r Pd)n-*
P- P(dX 1 ((FXI) ek)-ek (9)

Bergman and Kantor [9] realized that since the bonds are independent, the
(n)

moments P( can he calculated in terms of polynomials in p1  with coefficients

composed of infinite series involving the lattice Green's function g(x,y) with

x,y e Zd Independently, w.e computed the first four moments of with

(0) (2) (2)A( d*j p1 , i p p/d and -p (D+D-S(00 (,Dg(,Gj)A
=__ = ( g0,0))) A3(P 1 ) -. (DD kg('0,u.)p 1 .\,,i,, 1 ,

j l

where DkD . denotes the k,i second difference, and
kkl

+ N -k N-k+i
_N(Pl) (-' , I k 1* k.- 1

La * .h 'q ,. ... . -
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" The fourth moment iiTvolves one of the above-mentioned infinite series.

"*: ' Note that for d =2 the Keller relation m(h)m(l/h) = 1 determines the odd

moments of p in terms of lower order even moments. While we understand

the general structure of the nth moment and could with great patience compute,

say, the 2 0 th, we have as yet been unable to write down a general formula

(n)
for V.n . To understand the percolation threshold one must understand the

properties of Un) for large n. The hope is that perhaps for d=2 we
will be able to extract enough information about the to analyze the

critical exponent and critical probability. We would likle to apply graph

theoretic methods to the problem as the expansion (4) is similar to those

that arise in quantum field theory and statistical mechanics. Another approach

is to use the procedure alluded to at the end of section 1 to obtain tighter

-. ?" bounds on F(l) as more of the moments of u are known.

.Ar
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